West Point Bridge Design

B.M.C. Durfee High School Principles of Engineering 13 January, 2020

Design Brief

- Design a bridge while simultaneously minimizing the cost of it
- The bridge can cross at any elevation up to 24 meters above high water level and if it is lower than 24 meters excavation of the site is required
- Must not exceed an elevation of 32.5 meters above high water level
- The bridge may contain standard abutments, arch abutments, or one pier
- If using anchorages they must be located 8 meters behind the abutments

- The truss may have a maximum of 50 joints and a maximum of 120 members
- The deck of the bridge can use medium-strength or high-strength concrete but must be 10 meters wide for two lanes of traffic
- The members can be made of carbon steel, highstrength, low-alloy steel or quenched and tempered steel
- The members can be solid bars or hollow tubes
- The bridge must be able to withstand the weight of the reinforced deck, the asphalt, the main truss, and the truck loads

Research Summary

- > The lower the bridge, the higher the cost due to price of excavation
- ➤ Piers provide stability, yet increase the total cost
- ➤ The closer the arch abutments, the less they cost
- ➤ The more cable anchorages, the more expensive
- ➤ High strength deck material is more expensive than medium-strength
- ➤ Least expensive to Most: Carbon Steel, High-Strength, Quenched
- ➤ Hollow Tubes are cheaper than solid bars
- ➤ The larger the cross section, the more expensive

's First Bridge

's Second Bridge

's Third Bridge

's Second Bridge

Final Design Justification

0-5 5 denotes the most sufficient for the given category

Criteria

	Site Cost	Safety	Feasibility	Number of Members	Total Cost	Totals
's 1st	3	3	5	4	4	19
's 2nd	5	1	5	3	3	17
s 3rd	4	4	5	2	1	16
's 1st	2	3	2	5	5	17
s 2nd	1	4	1	1	2	9

Ideas

Final Bridge Design

Final Bridge Reports

Material		Carbon Steel	Carbon Steel					
/ield Stress (Fy)		250000 kN per sq. meter						
Modulus of Elasticity (E)		2.00E+08 kN per	sq. meter					
Mass Density		7850 kg per cubic	meter					
imensions:				Section (mm):				
Cross-Section Type	Solid Bar				_			
Cross-Section Size	100×100)		1				
Area	0.0100 s	q. meters		100				
Moment of Inertia	8.33E-0	5 meters ⁴		≚				
Member Length	4.00 me	ters			100			
ost:								
Jnit Cost		\$337.55 per mete	r					
Member Cost		\$1350.20						
trenath vs. Lenath:	Franh all tabs		Men	her:				
			- inch					
	16							
2500	·····		11 I I I I I I I I I I I I I I I I I I					
2250					:			
2230								
	1	÷ ÷ ÷			-			
2000								
2000 - · · · · ·								
2000								
2000			Max					
2000 1750 1500			Max Sien					
2000 1750 1500 1250			Max Siender					
2000 - 1750 - 1500 - 1500 -			MaxSenderness					
2000 - 1750 - 1500 - 1500 - 1250 - 1000 -			Max Senderhess Lein					
2000 - 1750 - 1500 - 1500 - 1250 - 1000 -			Max Senderness Leigth					
2000 - 1750 - 1500 - 1500 - 1250 - 1000 - 750 -			Max Senderhess Length					
2000 - 1750 - 1500 - 1500 - 1250 - 1000 - 750 -			Max Senderhess Length					
2000 - 1750 - 1500 - 1500 - 1250 - 1000 - 750 - 500 -			Max Senderhess Leirgth	· · · · · · · · · · · · · · · · · · ·				
2000 - 1750 - 1500 - 1500 - 1250 - 1000 - 750 - 500 - 250 -			Max Senderhess Leigth					
2000 - 1750 - 1500 - 1250 - 1000 - 750 - 500 - 250 -			Max Senderness Length					
2000 - 1750 - 1500 - 1250 - 1000 - 750 - 500 - 250 - 0			Max Senderheis Leirigth					

Material		Carbon S	Carbon Steel							
Yield Stree	ss (Fy)			250000	250000 kN per sq. meter					
Modulus a	of Elasticity (E)	2.00E+0	8 kN per	sq. mete	r			_		
Mass Den	sity	7850 kg	per cubic	meter				_		
Dimensions	s:		Section (mm):							
Cross-Sec	ction Type									
Cross-Sec	ction Size				11 .	Ύ.				
Area		q. meters			1 1	20				
Moment o	of Inertia		1.73E-05	5 meters ⁴][⊻ 📕		
Member L	ength		4.00 met	ters				1-2-	120	
Cost:										
Unit Cost				\$486.07	per mete	r				_
Member C	Cost			\$1944.2	9					
Strength v	s Length:	Graph all ta	abs			Me	mher			4
Juengurv	s. Lengui.	Grapitalita	103			1 M	mber.		~	1
			8							
35	500	• • • • • • • • • • •								÷.,
		÷ ÷		: :	-	: :		:	-	:
30								: 		÷
			i			: :		2		÷
		N E	i	: :	:	: :		2	2	÷
25	500 - · · · · · · · · · · ·	11	· · · • • • • • • • • • • • • • • • • •		•••			: · · · ·		÷
		$\geq N$	-					Max		
			i	· · · · · · · · · · · · · · · · · · ·				Se		Ĵ
8 20	000	_						de	2	÷
Strengt 20		÷ ÷		: :						
20 Strength (k)00							108		
Strength (kN)	500							iness Ler		÷
Strength (kN)	500							mess Length		•
Strength (kN) 15	500							mess Length		
Strength (kN) 15 10	500 - · · · · · · · · · · · · · · · · · ·							mess Length		
Strength (kN) 15	100							mess Length		
Strength (KN) 15 10	100							mess Length		
Strength (KN) 15 10	100							ness Length		
Strength (kN) 15	100							ness Length		
Strength (AN) 15 10		2 3	4	5 6	7			ness Length	11	12

1aterial						Carbon Steel							
Yield St	tress (Fy)					250000 kN per sq. meter						
Modulu	lodulus of Elasticity (E)						2.00E+08 kN per sq. meter						
Mass Density						7850 kg	per cub	oic mete	er				
imensio	mensions:						Section (mm):						
Cross-S	oss-Section Type Solid Bar					ar					x (
Cross-S	oss-Section Size 130x130					30					120		
Area					0.0169	sq. n	neters				Ϋ́,		
Momen	t of Iner	tia			2.38E-(05 me	eters ⁴				<u>بد</u> ا	< :	≯
Membe	r Length											130	
Cost:													
Unit Co	ost						\$570.46	5 per me	ter				
Membe	r Cost												
	4500 -	····:	:	:	:	: :: :	:	:::::::::::::::::::::::::::::::::::::::	:		: : :	••••	···· :
	4500 - · 4000 -												
	4500 - · 4000 - 3500 - ·												
	4500 - · 4000 - 3500 - · 3000 - ·												
Streng	4500 - · 4000 - 3500 - · 3000 - · 2500 - ·												
Strength (kN)	4500 - · 4000 - · 3500 - · 2500 - · 2000 - ·										· · · · · · · · · · · · · · · · · · ·		
Strength (kN)	4500 - · 4000 - · 3500 - · 2500 - · 2000 - · 1500 - ·												
Strength (kN)	4500 - · 4000 - · 3500 - · 2500 - · 2000 - · 1500 - ·												
Strength (kN)	4500 - · 4000 - · 3500 - · 2500 - · 2000 - · 1500 - · 500 - ·												
Strength (kN)	4500 - · 4000 - · 3500 - · 2500 - · 2000 - · 1500 - · 500 - ·												

aterial Properties:											
1aterial					Carbon Steel						
/ield Stress (Fy)					250000 kN per sq. meter						
Aodulus of Elasticit	odulus of Elasticity (E)					2.00E+08 kN per sq. meter					
lass Density					7850 kg p	er cubic r	neter				
imensions:								Sectio	on (mr	ı):	
Cross-Section Type	oss-Section Type Solid Bar									_	
Cross-Section Size	oss-Section Size 140x140] _	Ϋ́		
Area			0.019	6 sq.	meters			14	10 .l.		
Aoment of Inertia			3.20E	-05 m	eters ⁴			11	¥ 📃	~	
Aember Length			4.47 r	meter:	3]	P~	140	
ost:											
Jnit Cost					\$661.60	per meter					
Aember Cost					\$2958.76						
trength vs. Length	n: Grap	oh all ta	bs				Me	mber:		\sim	•
5000 J			1	2							
5000 -			11 	2						• • • • • •	•
5000 - · · ·			1	2							
5000 - · · · 4500 - · · ·			1	2							
5000 - · · · 4500 - · · · 4000 - · · ·			11 	2				 			
5000 - · · · · · · · · · · · · · · · · ·				2							
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · ·				2				· · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · ·				2				· · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · ·				2				· · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · ·											
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · ·				2				· · · · · · · · · · · · · · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2000 - · · · ·				2				· · · · · · · · · · · · · · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2000 - · · · ·				2				· · · · · · · · · · · · · · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2000 - · · · · 1500 - · · ·				2				· · · · · · · · · · · · · · · · · · ·			
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2500 - · · · · 1500 - · · · ·				2							
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2500 - · · · · 1500 - · · · · 1000 - · · ·				2							
5000 - · · · · 4500 - · · · · 4000 - · · · · 3500 - · · · · 3000 - · · · · 2500 - · · · · 1500 - · · · · 1000 - · · ·				2							
5000 - · · · · 4500 - · · · · 4000 - · · · · 3000 - · · · · 2500 - · · · · 2000 - · · · · 1500 - · · · · 500 - · · ·											
5000 - · · · · 4500 - · · · · 4000 - · · · · 3000 - · · · · 2500 - · · · · 2000 - · · · · 1500 - · · · · 500 - · · ·				2							

Materia	al			Material					Carbon Steel				
Yield S	tress (Fy))					250000 kN per sq. meter						
Modulu	us of Elast	ticity (E)					2.00E+08 kN per sq. meter						
Mass D	Density						7850 kg per cubic meter						
imensi	ions:									Se	ction (r	nm):	
Cross-	Section T	ype			Solid B	ar					- T -		
Cross-	Pross-Section Size 150x Invea 0.022				150x1	50					T.		
Area					0.022	5 sq. n	neters				150		
Momer	nt of Iner	tia			4.22E-	-05 me	eters ⁴				<u>¥</u> •		эł
Membe	er Length				8.00 m	neters					г	150	~1
lost:													
Unit Co	ost						\$759.49	per mete	r				
Membe	er Cost						\$6075.90)					
trengt	h vs. Len	gth:	Graph	h all tal	os				N	1embe	er:	, ,	
-													
									1				
	6000 - ·	• • • • : • •	• • • : • • •	• • . • • •	• • • • • • •	• • • .• •	• • • • • • • • •	• • • • • • •	1		• • : • •	• • • : • •	• • • .
	6000 - ·								i				
	6000 - ·								i i i				
	6000 - ·								i i i				
	5000 -								i i i i i				
	5000 -								i i i i i i i				
	6000 - · 5000 - 4000 - ·												
9	6000 - · 5000 - ·												
Streng	6000 - · 5000 - ·												
Strength (6000 - · 5000 - · 4000 - ·												
Strength (kN)	6000 - · · 5000 - · · 4000 - · · 3000 - ·												
Strength (kN)	6000 - · 5000 - · 4000 - ·												
Strength (kN)	6000 - · 5000 - · 3000 - · 2000 - ·												
Strength (kN)	6000 - · 5000 - · 3000 - · 2000 - ·												
Strength (kN)	6000 - · 5000 - · 3000 - · 2000 - ·												
Strength (KN)	6000 - · 5000 - · 3000 - · 2000 - ·												
Strength (kN)	6000 - · 5000 - · 3000 - · 2000 - · 1000 - ·												
Strength (XN)	6000 - · 5000 - · 3000 - · 2000 - · 1000 - ·												
Strength (XN)	6000 - · 5000 - · 3000 - · 2000 - · 1000 - ·												

Final Bridge Report

Continued

						Load Test Resu	lts
#	Material Type	Cross Section	Size (mm)	Length (m)	Slender- ness	Compression Force/Strength	Tension Force/Strength
1	CS	Bar	150	8.00	184.75	0.86	0.00
2	CS	Bar	150	8.00	184.75	0.78	0.00
3	CS	Bar	100	4.00	138.56	0.52	0.00
4	CS	Bar	100	4.00	138.56	0.96	0.00
5	CS	Bar	120	4.00	115.47	0.74	0.00
6	CS	Bar	120	4.00	115.47	0.84	0.00
7	CS	Bar	100	4.00	138.56	0.91	0.00
8	CS	Bar	120	4.00	115.47	0.86	0.00
9	CS	Bar	120	4.00	115.47	0.76	0.00
10	CS	Bar	100	4.00	138.56	0.96	0.00
11	CS	Bar	100	4.00	138.56	0.48	0.00
12	CS	Bar	140	4.47	110.66	0.86	0.00
13	CS	Bar	140	4.47	110.66	0.77	0.00
14	CS	Bar	130	4.12	109.87	0.78	0.00
15	CS	Bar	130	4.12	109.87	0.58	0.00
16	CS	Bar	100	4.00	138.56	0.37	0.00
17	CS	Bar	130	4.12	109.87	0.57	0.00
18	CS	Bar	130	4.12	109.87	0.77	0.00
19	CS	Bar	140	4.47	110.66	0.78	0.00
20	CS	Bar	140	4.47	110.66	0.86	0.00
21	CS	Bar	130	6.00	159.88	0.80	0.00
22	CS	Bar	130	4.00	106.59	0.41	0.00
23	CS	Bar	120	3.00	86.60	0.29	0.00
24	CS	Bar	140	2.00	49.49	0.08	0.01
25	CS	Bar	140	2.00	49.49	0.07	0.02
26	CS	Bar	120	3.00	86.60	0.26	0.00
27	CS	Bar	130	4.00	106.59	0.37	0.00
28	CS	Bar	130	6.00	159.88	0.74	0.00
29	CS	Bar	140	7.21	178.43	0.00	0.16
30	CS	Bar	130	5.66	150.74	0.00	0.16
31	CS	Bar	130	5.00	133.23	0.00	0.20
32	CS	Bar	130	4.47	119.17	0.04	0.15
33	CS	Bar	120	4.47	129.10	0.51	0.00
34	CS	Bar	120	4.47	129.10	0.56	0.00
35	CS	Bar	130	4.47	119.17	0.06	0.12
36	CS	Bar	130	5.00	133.23	0.00	0.18
37	CS	Bar	130	5.66	150.74	0.00	0.14
38	CS	Bar	140	7.21	178.43	0.00	0.15

Cost Report

Cost Calculations Report

rotal Cost	M + C + P + S	\$194,791.33 + \$16,000	0.00 + \$5,000.00 + \$83,300.00 =	\$299,091.33
	Cable Anchorage Cost		No anchorages =	\$0.00
	Pier Cost		No pier =	\$0.00
	Abutment Cost	(2 arch abutm	ents) x (\$20,500.00 per abutment) =	\$41,000.00
	Excavation Cost	(0 cubic	c meters) x (\$1.00 per cubic meter) =	\$0.00
lite Cost (S)	Deck Cost	(9 4-mei	ter panels) x (\$4,700.00 per panel) =	\$42,300.00
	2 - 150x150 mm Carbon Steel Bar		(\$1,000.00 per Product) =	\$1,000.00
	8 - 140x140 mm Carbon Steel Bar		(\$1,000.00 per Product) =	\$1,000.00
	14 - 130x130 mm Carbon Steel Bar		(\$1,000.00 per Product) =	\$1,000.00
	8 - 120x120 mm Carbon Steel Bar		(\$1,000.00 per Product) =	\$1,000.00
Product Cost (P)	6 - 100x100 mm Carbon Steel Bar		(\$1,000.00 per Product) =	\$1,000.00
Connection Cost (C)		(20 Joint	ts) x (400.0 per joint) x (2 Trusses) =	\$16,000.00
1aterial Cost (M)	Carbon Steel Solid Bar	(22650.2	2 kg) x (\$4.30 per kg) x (2 Trusses) =	\$194,791.33
Type of Cost	Item	Cost Calculation		Cost

How does the type and direction of stress applied affect the selection of the material type and the cross-sectional area?

Out of the three materials (carbon steel, high-strength low-alloy steel or quenched and tempered steel), carbon steel can yield the least amount of stress while quenched steel can yield the most stress. Furthermore, the larger the cross section of the bar the more stress it will be able to yield. This means that in areas of the bridge that face high amounts of pressure and stress, the member material would need to be changed to either high-strength steel or quenched steel. Likewise, if the designer does not want to change the material, then the cross-sectional area would need to be increased to support the stress.

How can the forces of compression and tension work together to make a stronger bridge?

Tension and compression are forces that work together and in some way "cancel" each other out. Compression force "compresses" or applies pressure to an area of a bridge whereas tension force tends to stretch an area. These forces counteract one another while reaching equilibrium, thus building a stronger bridge.

Sources

West Point Bridge Designer 2016:

Ressler, S. (n.d.). Retrieved from http://bridgedesigner.org/about/