
Affordable Housing Design

PLTW Civil Engineering and Architecture

Table of Contents

Table of Contents	
Project Description:	3
Initial Design	4
Client Survey	4
Bubble Diagrams	5
Floor Plan Rough Sketches	5
Final Floor Plan Sketch	5
Construction Drawings	6
Calculations	7
Water Supply Calculations	7
Stormwater Runoff Calculations	7
Wastewater Calculations	7
Heat Loss Calculations	7

Project Description

Project Summary

I was volunteering with Habitat for Humanities when Mr. Bailey requested a home. He, his wife, and his dog required shelter. It was my job to design and model a home for them. I conducted an interview with Mr. Bailey that allowed me to create a few basic designs. After reviewing the designs with Mr. Bailey, he chose a design and I began modeling the house in Revit, a 3D Architecture modeling software.

Site Description

When the house was completed, I placed it on the site. The site was a spacious grassland in Noblesville, IN that was accessible through both Maple Street and 10th Street. After determining the location of the home, there was still a lot of grassland left. The open space could allow for expansion of the home in the future.

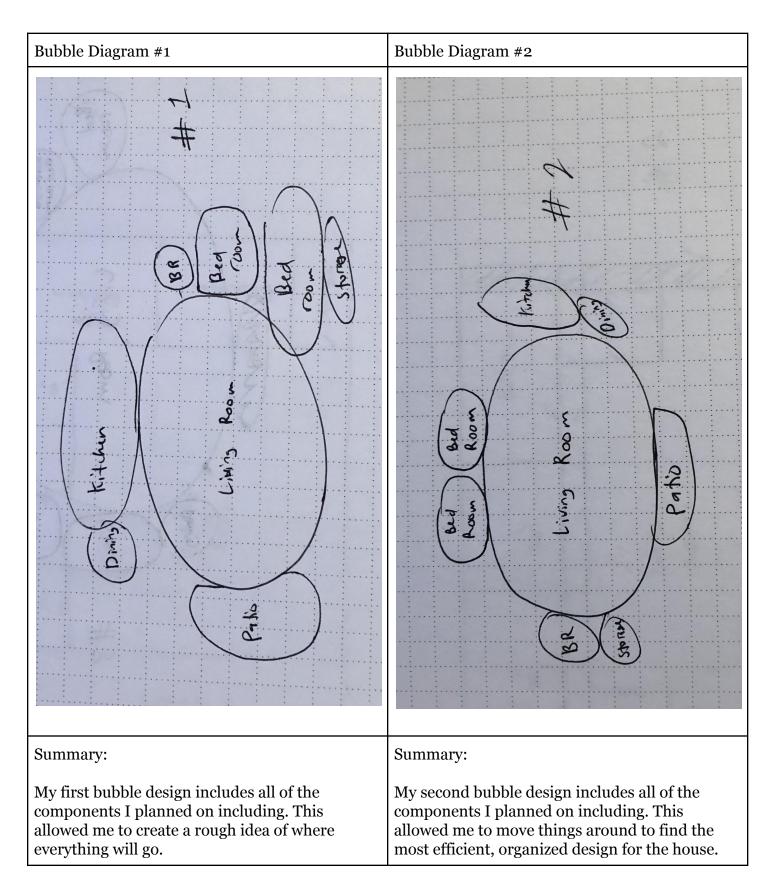
Relevant Habitat for Humanity Guidelines

- 1. Since the home was designed to house two adults, I abided by the size limit of 900 ft², which allowed me to incorporate 2 bedrooms and one bathroom.
- 2. I included a 4 ft crawl space that allowed me to create the necessary foundation to support the house.
- 3. I abided by the Residential Code Requirements for insulation size and placement, which will keep the house cool in the summer and warm in the winter.
- 4. I included ceiling light fixtures for incandescent light in every room to provide adequate lighting.
- 5. The rear porch has exterior light fixtures to provide adequate lighting for the exterior of the home.

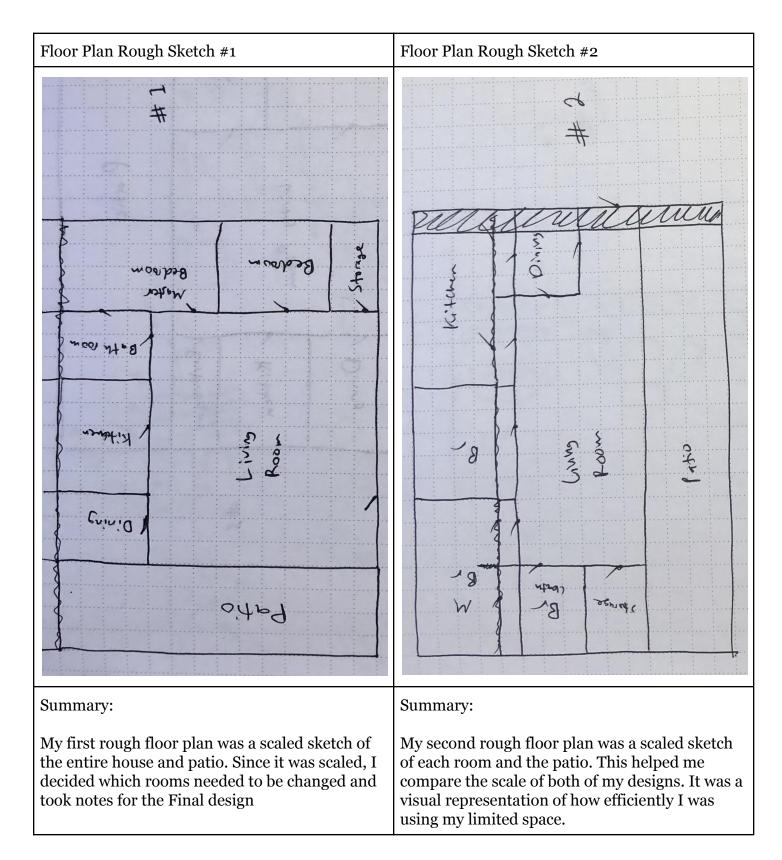
Universal Design Examples

- 1. All switches and appliance controls are located at accessible heights (44-48 in).
- 2. All doorways and wall openings are 3ft to allow wheelchairs easy access into all rooms of the home.
- 3. All phone jacks and electrical outlets are at the accessible heights (18 inches).

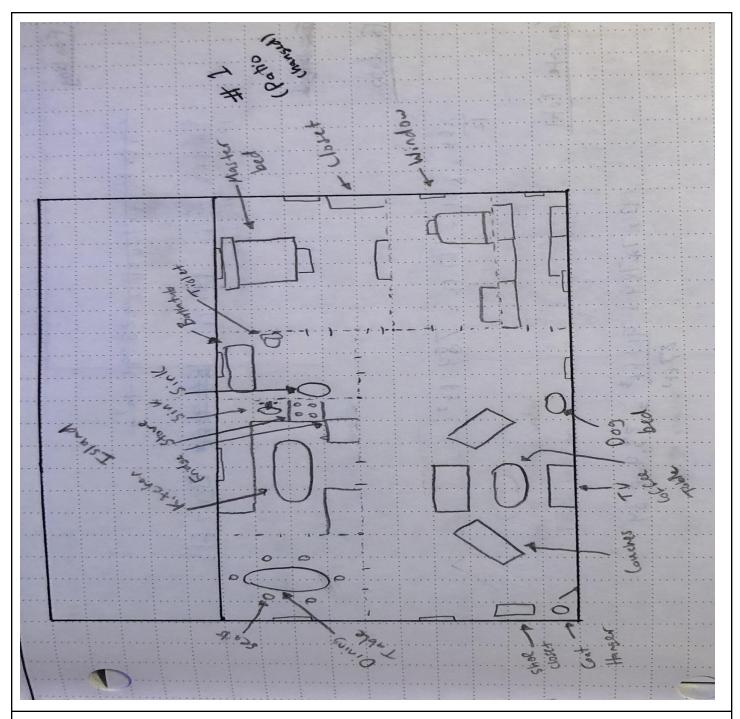
Initial Design


Client Survey

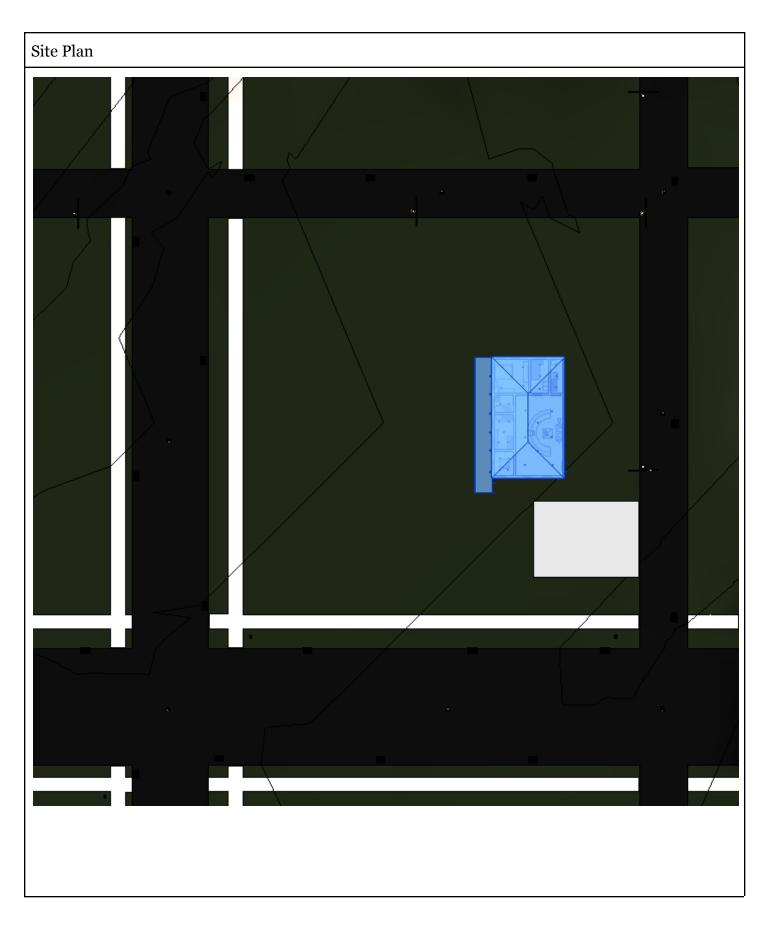
		Special Needs	
Family Information		Disabilities/illness	NIA
Adult Names/Ages	Waune/31 Rachel/31		
Occupations	Teacher Medical Biller	Energy Saving/ LEED Concepts and Ideas	NIA
Child Names/Ages		Site Development	
Child Names/Ages		Water Savings	
Physical Disabilities		Energy Efficiency	
Other Special Needs	_	Materials Selection	
Pets	Nero (Dog)	Indoor Environmental Quality	Call seal
Architectural Details		Other Ideas	Parch/Patio
House Style	Federal	Other Ideas	13100/ 1410
Number of Bedrooms	2		
Number of Bathrooms	1		
Square Footage	900 se ^{-ft}		
Deck or Patio	Yes		
Extra Storage	182 Yes		
Leisure Activities		-	
Iobbies	None		
Entertainment	- TV		
Equipment	Computer	State State State	

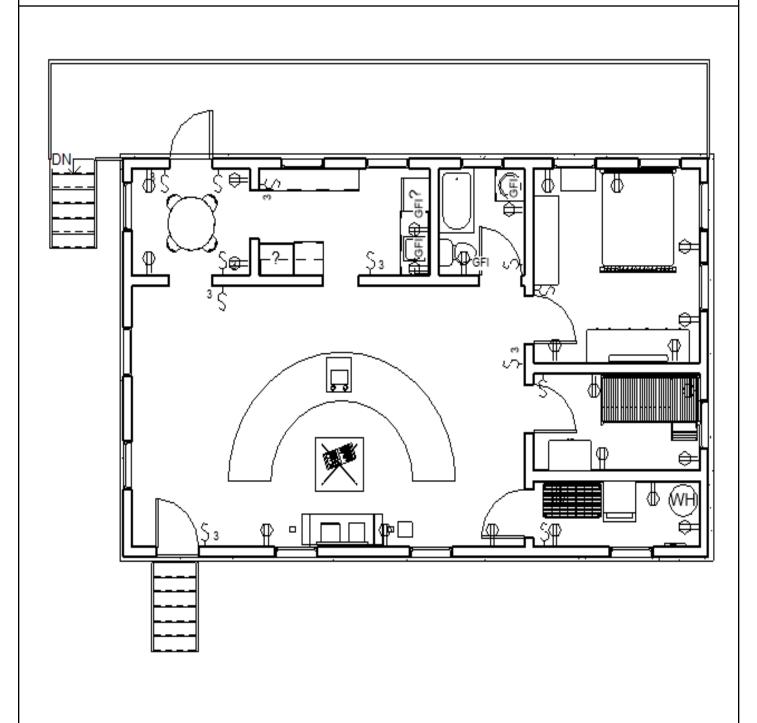

Summary:

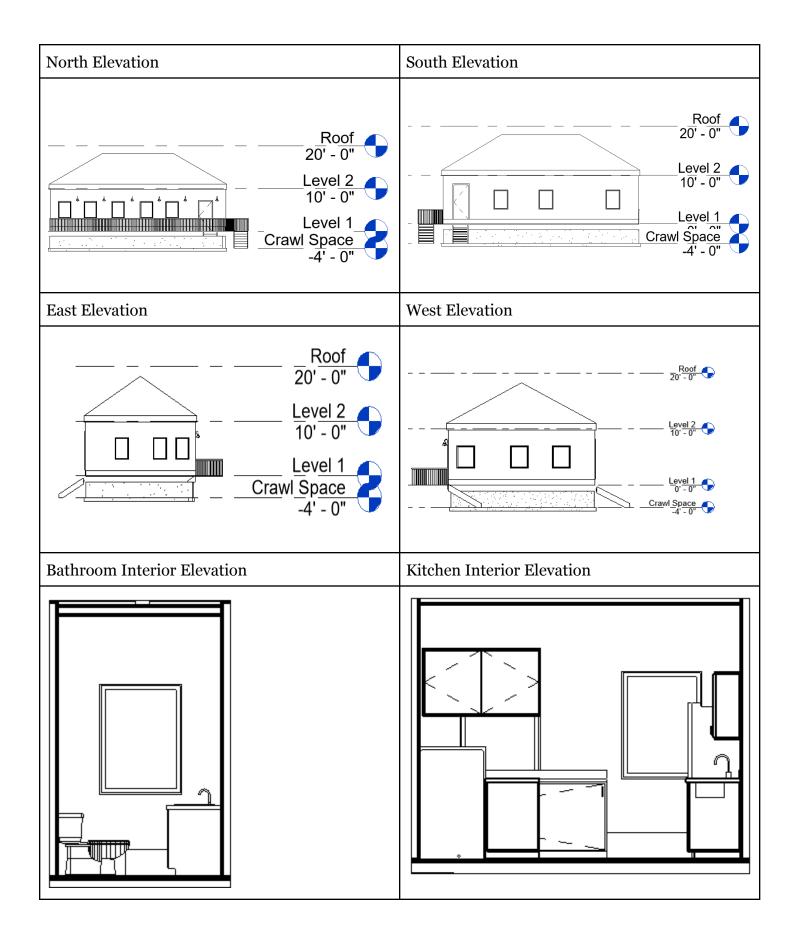
After conducting an interview with Mr. Bailey, I learned he requires housing for 2 adults and a dog. According to Habitat for Humanities guidelines, the home will have 2 bedrooms and 1 bathroom. I plan to build a Federal style house with about a 900 ft² area. I will also include a large patio, which is not accounted for in the total area. There will also be entertainment such as a T.V. for leisure time.

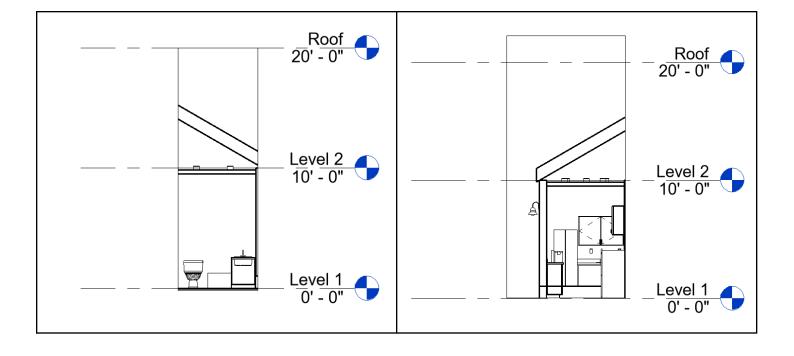

Bubble Diagrams

Floor Plan Rough Sketches


Final Floor Plan Sketch


Summary:


Using both rough sketches, I decided that the first design was a better, simpler plan for the house. I was also a better use of space and would reduce costs such plumbing and water since the bathroom and kitchen are closely placed. Although it was a great design, I made slight adjustments such as room area and I also moved the patio to the rear end of the house rather than the side.


Construction Drawings

Calculations

Concrete Foundation Calculation

Found ation
Forting:
$$\frac{8}{12}$$
 ft * $\frac{16}{12}$ ft * 147 ft = 130.7 ft =
Foundation: $\frac{8}{12}$ ft * $\frac{16}{12}$ ft = 147 ft = 784 ft =
Foundation: $\frac{8}{12}$ ft * $\frac{8}{12}$ ft = 914 ft = 784 ft =
Concrete Total: 130.7 ft + 784 ft = 914 ft = 3.9 \rightarrow 34 yd =
Concrete Total: 130.7 ft + 784 ft = 914 ft = 3.9 \rightarrow 34 yd =
Concrete Total: 130.7 ft + 784 ft = 914 ft = 3.9 \rightarrow 34 yd =
Concrete Total: 130.7 ft + 784 ft = 914 ft = 3.9 \rightarrow 34 yd =
Concrete Total: 130.7 ft + 784 ft = 914 ft = 191 ft = 3.9 \rightarrow 34 yd =
Concrete Total: 147 ft = 49 pixes
 $\frac{111}{3}$ pixes total
Horizontal - 147 ft = 49 pixes
 $\frac{111}{9.5}$ ft =
Found ation Total: (34 yd = 88 fg d = 3) + (111 * \$47.75) = \$3859.25
Conclusion:

It will cost \$3,859.25 to pay for the foundation of the house. This only covers supplies and cost for labor will increase the price for the foundation.

Water Supply Calculations

	Water Supply
A.	Static Head: 943 Ft - 872, 81 Gt = 70.19 Ft of water
B.	Head Loss: hr = 10.44. L. Q'. 35 10.44. 16, 56538+ . 100".85 6.981884
1	Head Loss: hr = 10.44. C. Q. 1.35 10.44. 16, 565384 . 1001.85 _ 6.931884 C.1.85 _ J. 3655 100 1.85 . 84.8655
	Total length = 16473.6Ft + 7(12) Ft + 7.7Ft = 16,565.3 Ft
	7 90° Rithings 1 45° Fitting
	Manual Bar Inc Etc. 1986 4 - 2 Atom TELLE
C.	Dynamic Head: static head - head loss = 70.19 ft - 6.981 = 63.209 ft
	Mannie Per en Blu 7 9779 Children 79
0,	Actual Pressure: Bynamic Lead. 1851 = 27.36 psi
	15/200 : TAL 73/40-766 1 1
E.	The pressure should be reduced for residental use.

Conclusion:

After conducting several calculations, I estimated that the water pressure of the home is 27.36 psi. This pressure is very strong and would cause damage in residential use. A pressure regulator will need to be installed.

Stormwater Runoff Calculations

	Stormwater Runoff
	Rational Method: Ope: Cf (1A= 1.25(0.2)(3.12)(0.4)= 0.312 cfs
	Post - Revelopment : Opost = ((FC: A) grass + ((FC: A) drive way
1.14.92	$\varphi_{\text{Post}} = (1,25)(0,2)(3,12)(0,379) + (1,25)(0,95)(3,12)(0,051)$
1.1.1.1.1.1	Q post = 0.4612 cfs
	Change of Site Runoff = @ post - @ pre = 0.4612 cfs - 0.312 cfs: 0.1492 cfs
Conclusion:	

The stormwater runoff before the house was less than that of the stormwater runoff after the house. This means that the house and surrounding land is less vulnerable to floods.

Wastewater Calculations

	Wastewater
Cro.	on Elevation: 763.15 Ft + 9157.8+7 = 9164.8 in - 763.
	half 12 inv. Elv.
Diel	
Vist	ance Structure - D Sewer Main: 123 Ft (Determined in revit)
Mini	mum Size of sever : 3" or 4"
Maxi	mum Pipe Inv. Elv. : 763.15 Ft - 2 Ft = 761.15 Ft
22	
Maxi	mun Pipe Crw. Elv. : 763.73 Ft - 2 Ft = 761,73 ft
C1	761 730 761 150 007620
siope	: 761,73ft-761.15 ft, 100 = 0.0763 %
Minia	um slope: 1761.15 Ft - 761.73 Ft1 100 = 0.0760 %

Conclusion:

Through several calculations, I determined the dimensions for the wastewater plumbing of the house. This data will be used by the construction workers to build the most efficient plumbing system possible for the home.

Heat Loss Calculations

1 A A	Heat Loss		
al alter	Heat Load: Q': AUST = 7.11.875 Ft 0, 13986 Bty - 33° F = 50 69.23 Bty hr		
	Area: A= l × w= 41.1875 F+ × 10 F+ = 411.875 F+2		
	Coef. of Heat Cond.: R-value = 0.5" + 5.5" + 0.625" + 0.5" = 7.125 kty		
	$U - value = \frac{1}{R - value} = \frac{1}{7.125} = 0.13986$		
Carl States	Tempature Differential: DT= 90°F - 2°F= 83°F		
Conclusion:	Conclusion:		
After several calculations, I determined that the heat loss of the home is 5069.23 Btu/hr			